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ABSTRACT 

 
There are two main interests in Digital Camera Image Forensics, 
namely source identification and forgery detection. In this paper, 
we first briefly provide an introduction to the major processing 
stages inside a digital camera and then review several methods for 
source digital camera identification and forgery detection. Existing 
methods for source identification explore the various processing 
stages inside a digital camera to derive the clues for distinguishing 
the source cameras while forgery detection checks for 
inconsistencies in image quality or for presence of certain 
characteristics as evidence of tampering.  

1. INTRODUCTION 
 
Multimedia Forensics has become important in the last few years. 
There are two main interests, namely source identification and 
forgery detection. Source identification focuses on identifying the 
source digital devices (cameras, mobile phones, camcorders, etc) 
using the media produced by them, while forgery detection 
attempts to discover evidence of tampering by assessing the 
authenticity of the digital media (audio clips, video clips, images, 
etc). In this paper, we review several techniques in digital camera 
image forensics, i.e. in source camera identification and in forgery 
detection. Source camera identification methods explore different 
processing stages of the digital camera for unique characteristics 
and exploit the presence of lens radial distortion [1], sensor 
imperfections [2], [3], color filter array (CFA) interpolation [4], 
[5], [6], and inherent image features [7], etc. Image forgery 
includes splicing of images to construct a new concocted image, 
applying region duplication/swapping to hide/relocate certain 
objects in the image and applying image editing to remove/add 
new objects from/into the image. For forgery detection, some of 
the methods inspect the image for inconsistencies in chromatic 
aberration [11], lighting [12], and camera response function (CRF) 
[13] as signs of forgery. Others try to detect certain modes of 
manipulation using JPEG quantization tables [10], bicoherence 
[14], and robust matching [15].  

In section 2, we give an overview of the structure and 
processing stages of a typical digital camera. In sections 3 and 4, 
several methods for source digital camera identification and 
forgery detection are presented respectively and section 5 
concludes the paper. 

 
Figure 1. Elements of a typical digital camera 

2. INSIDE A DIGITAL CAMERA 
 
The general structure of a digital camera is shown in Figure 1. 
Digital cameras consist of lens system, filters, color filter array 
(CFA), image sensor, and digital image processor (DIP) [9]. Color 
images may suffer from aberrations caused by the lenses, such as 
chromatic aberration and spherical aberration. Chromatic 
aberration is the failure to converge different wavelengths at the 
same position on the sensor, while spherical aberration causes light 
passing through the periphery of the spherical lens to converge at a 
point closer to the lens than light passing through the lens center. 
In the lens systems, these effects can be minimized using special 
combinations of convex and concave lenses, as well as using 
aspheric lenses. The lens system also includes the auto-exposure 
control, auto-focus control and the image stabilization unit. Auto-
exposure changes the aperture and the shutter speed along with a 
carefully calibrated automatic gain controller to capture well-
exposed images. Auto-focus runs a miniature motor that focuses 
the lenses by moving the lenses in and out until the sharpest 
possible image of the subject is obtained. Image stabilization helps 
to give sharper pictures by counteracting camera shake. 

After passing through the lenses, light goes through a set of 
filters. An infrared filter is an absorptive or reflective filter 
allowing only the visible part of the spectrum to pass, while 
blocking infrared radiation that can decrease the sharpness of the 
formed image. An anti-aliasing filter reduces aliasing, a 
phenomenon that happens when the spacing between pixels in the 
sensor cannot support the finer spatial frequency of the target 
objects such as decorative patterns. 

At the heart of a digital camera is the image sensor. An image 
sensor is an array of rows and columns of photodiode elements, or 
pixels. When light strikes the pixel array, each pixel generates an 
analog signal proportional to the intensity of light, which is then 
converted to digital signal and processed by the DIP. Most digital 
cameras use a charge-coupled device (CCD) as the image sensor 
although CMOS chips are a popular alternative. Sensor pixels are 
not sensitive to colors; they just record the brightness of light, thus 
producing a monochromatic output. To produce a color image, a 
color filter array (CFA) is used in front of the sensor so that each 
pixel records the light intensity for a single color only. Most digital 
cameras use the Green-Red-Green-Blue (GRGB) Bayer pattern 
CFA. The output from the sensor with a Bayer filter is a mosaic of 
red, green and blue pixels of different intensities. Since each pixel 
record only one of the three colors, the full color image is 
accomplished by the DIP using various interpolation 
(demosaicking) algorithms. Other alternative CFA filters include 
the Cyan-Yellow-Green-Magenta (CYGM) pattern, the Red-
Green-Blue-Emerald (RGBE) pattern, and the Cyan-Magenta-
Yellow (CMY) pattern. Besides interpolation, the DIP also 
performs further processing such as white balancing, noise 
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reduction, matrix manipulation, image sharpening, aperture 
correction, and gamma correction to produce a good quality image. 

 
3. SOURCE DIGITAL CAMERA IDENTIFICATION  

 
3.1. Using Lens Aberration 
Choi et al [1] propose the lens radial distortion as a fingerprint to 
identify source camera. Radial distortion causes straight lines to 
appear as curved lines on the output images and it occurs when the 
transverse magnification MT (ratio of the image distance to the 
object distance) is not a constant but a function of the off-axis 
image distance r. The authors argue that different manufacturers 
employ different lens system design to compensate for radial 
distortion and that the lens focal length affects the degree of radial 
distortion. Thus, each camera model will express a unique radial 
distortion pattern that helps to identify it. Two experiments were 
performed on 3 different camera models obtaining average 
classification accuracies of 91.53% and 91.39% respectively.  

Although this method is not tested for two cameras of the same 
model, based on the authors’ arguments on radial distortion 
differences, we can expect a low accuracy. Additionally, this 
method will fail to measure radial distortion if there is no straight 
line in the image since the distortion is measured using the straight 
line method. Lastly, the authors assume that the centre of distortion 
is the centre of image, which may not be the case. If this is taken 
into account, a higher accuracy may be possible. 
 
3.2. Using Sensor Imperfections 
Pixel Defects: Geradts et al [2] examine the defects of CCD pixels 
and use them to match target images to source digital camera. 
Pixel defects include point defects, hot point defects, dead pixel, 
pixel traps, and cluster defects. To find the defect pixels, a couple 
of images with black background are taken by each of the 12 
cameras tested and compared to count the common defect points 
that appear as white. The result shows that each camera has 
distinct pattern of defect pixels. However, it is also shown that the 
number of visible defect pixels for the same camera differs 
between the images and depends very much on the content of the 
image. It is also shown that the number of defect pixels visible on 
images of the same content taken by the same camera at different 
temperatures is different. Furthermore, for cameras with high-end 
CCD, the authors cannot find any visible defect pixel, which 
means that not all cameras necessarily have pixel defects. In 
addition, most cameras have built-in mechanisms to compensate 
for the defective pixels. Therefore, the method cannot be directly 
applied for all digital cameras. 

 
Sensor Pattern Noise: A reliable method for identifying source 
camera based on sensor pattern noise is proposed by Lukas et al in 
[3]. The pixel non-uniformity (PNU), where different pixels have 
different light sensitivities due to imperfections in sensor 
manufacturing processes, is a major source of pattern noise. This 
makes PNU a natural feature for uniquely identifying sensors. 

The authors study 9 camera models where 2 of them have 
similar CCD and 2 are exactly the same model. The camera 
identification is 100% accurate even for cameras of the same 
model. The result is also good for identifying compressed images. 
One problem with the conducted experiments is that the authors 
use the same image set to calculate both the camera reference 
pattern and the correlations for the images. We have run several 
experiments with this model for cropped images. It turns out that 

the model fails to predict the source camera of cropped images. In 
addition, for the model to work, the size of the images used for 
computing the camera reference pattern should be the same as the 
size of the test image. 
 
3.3. Using CFA Interpolation 
Traces of Color Interpolation in Color Bands: Bayram et al [4] 
explore the CFA interpolation process to determine the correlation 
structure present in each color band which can be used for image 
classification. The main assumption is that the interpolation 
algorithm and the design of the CFA filter pattern of each 
manufacturer (or even each camera model) are somewhat different 
from others, which will result in distinguishable correlation 
structures in the captured images. Using the iterative Expectation 
Maximization (EM) algorithm, 2 sets of features are obtained for 
classification: the interpolation coefficients from the images and 
the peak location and magnitudes in the frequency spectrum of the 
probability maps. 

When using a 5x5 interpolation kernel, the classification 
accuracy is 95.71% for two different cameras but it drops to 
83.33% when three cameras are compared. A larger set of cameras 
should have been used to determine its effect on the classification 
accuracy. No experiment is run for cameras of the same model but 
we expect the method to fail because cameras of the same model 
normally share the same CFA filter pattern and interpolation 
algorithm. In addition, the authors have pointed out that this 
method does not work well for compressed images. 
 
Quadratic Pixel Correlation Model: Long and Huang [5] obtain a 
coefficient matrix from a quadratic pixel correlation model where 
spatially periodic inter-pixel correlation follows a quadratic form. 
Four cameras together with cartoon pictures are used for the 
experiments, which obtain 95% accuracy for one camera, 98% for 
another camera and 100% accuracy each for the remaining two 
cameras. The authors also test with modified images (compressing, 
adding Gaussian noise, gamma correction, smoothing). When 
compressed with quality 80, the accuracy drops to as low as 80%. 
Accuracy for images with other modifications is even lower. 

Since cameras of the same or similar model would use the 
same demosaicking algorithm, we expect that the model will not 
correctly differentiate cameras of the same model. Furthermore, as 
shown by the experiments, the model performs poorly for modified 
images. Other than that, the model gives a very good performance. 
 
Binary Similarity Measures: Celiktutan et al [6] use a set of 
binary similarity measures for identifying source cell-phone. The 
underlying assumption is that proprietary CFA interpolation 
algorithm leaves correlations across adjacent bit-planes of an 
image that can be represented by these measures. Binary similarity 
measures are metrics used to measure the similarity between 
binary images, i.e. between the bit-planes of an image. 108 binary 
similarity measures are obtained, and like [7], a set of 10 Image 
Quality Metrics is used as additional features for classification. 

The highest average accuracy for classifying 3 groups of 
cameras is 98.7%, while the lowest average accuracy is 81.3%. 
When classifying 9 cameras, only 62.3% of the classification is 
correct. The results show that this method is dependent on the 
target cameras and the number of cameras used. Only the Red 
channel is considered in this paper, thus for a better result, the 
correlations within Blue and Green channels and across the 
channels may give a better result. 
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3.4. Using Image Features 
Kharrazi et al [7] identify a set of image features that can be used 
to uniquely classify a camera model. The 34 proposed features are 
categorized into 3 groups: Color Features, Image Quality Metrics, 
and Wavelet Domain Statistics. Features are extracted from images 
of two cameras, which are then used to train and test the classifier. 
The result is as high as 98.73% for uncompressed images and 
93.42% for JPEG images compressed with a quality factor of 75. 
The accuracy rate drops to 88% when five cameras are used. 

Tsai et al [8] also has a similar study for this method using 
different camera sets. The reported accuracy rate for cameras with 
similar or closely related CCD is low (67.48%). Hence, this 
method does not work well for cameras with similar CCD and is 
unsuitable for identifying source cameras of the same model. 
Furthermore, it requires all cameras to take images of the same 
content and resolution, which is not easy in practice. 
 

4. IMAGE FORGERY DETECTION 
 
4.1. Using JPEG Quantization Tables 
Digital cameras generally use JPEG compression to encode images 
and different manufacturers typically configure their devices with 
different compression levels and parameters. Farid [10] exploits 
this difference by extracting the JPEG quantization table from an 
image and comparing it against a database of known digital 
cameras for source identification. Likewise, it can be compared 
against a database of photo-editing software for signs of 
tampering. 

Out of 204 digital cameras used for the experiments, 62 
cameras had unique quantization table while the remaining tables 
fall into equivalence classes ranging from 2 to 28 in size. Using 5 
different versions of Adobe Photoshop, an image (presumably 
uncompressed) is saved at each of the 13 compression levels for 
each version and it was found that the JPEG quantization tables 
used were different from those of the 204 cameras. Thus, by 
detecting the presence of JPEG quantization tables unique to any 
particular photo-editing software, it can be determined if the image 
is authentic or was previously tampered with and saved using a 
photo-editing software. Often, the image output from the camera is 
already compressed in JPEG format and if edited using editing 
software, there will exist a double JPEG compression problem, 
which Popescu et al look at in another paper [21]. 
 
4.2. Using Chromatic Aberration 
Johnson et al [11] check for the inconsistency of lateral chromatic 
aberration across an image as a sign of tampering. The authors 
model lateral chromatic aberration as the expansion or contraction 
of a color channel with respect to one another, which results in a 
misalignment of the color channels. Model parameters are sought 
to bring the color channels back into alignment and a metric based 
on mutual information is used to quantify the alignment. The error 
between the local and global model parameters is quantified by 
computing the average angular error between the displacement 
vectors at every pixel. If the average angular error exceeds a 
certain threshold, it is likely that aberration has been inconsistent 
across the image due to forgery. 

From experiments, the average angular error is 14.8° with 
around 98.0% of the errors below 60°. For forensic purposes, the 
image is tested in blocks and if the block’s local estimate differs 
from the global estimate by more than 60°, it is considered to be 
inconsistent with the global estimate and indicates signs of 

tampering. One apparent weakness is that it is difficult to estimate 
chromatic aberration from a block with little or no spatial 
frequency content, such as a largely uniform patch of sky. 
Therefore, if the manipulated regions of the image consist of 
content with little spatial frequency (e.g. concealment of features 
in the sky), it is unlikely to be detected by the algorithm. 

 
4.3. Using Lighting 
Johnson et al [12] propose a technique of detecting inconsistencies 
in the direction of the illuminating light source for each object or 
person in an image using a 2-D model, which builds upon the work 
by Nillius et al [16]. Three different situations – infinite, local and 
multiple light sources – are tested to determine the error in the 
estimated light source direction relative to the actual direction. The 
errors are typically below 2° except for the infinite light source 
case where the estimated light direction of an object with non-
constant reflectance yielded an error of 10.9°. When tested on 
sample images, the algorithm is successful in detecting 
contradicting light source directions. While this technique should 
work well for outdoor scenes where the Sun is often the only light 
source, indoor scenes with multiple light sources would make 
analysis complicated due to multiple occluding boundaries. 
 
4.4. Using Camera Response Function (CRF) 
Hsu et al [13], [22] propose a method of detecting image splicing 
using geometry invariants and camera response function (CRF). 
This idea is similar to the work by Lin et al [17] that detects for 
splicing by observing for abnormality in the camera response 
functions (CRF). The suspected splicing boundary is first manually 
identified. The geometry invariants from the pixels within each 
region on either side of this boundary are computed and used to 
estimate the CRF. The CRFs from each region are then checked 
for consistency with each other using cross-fitting techniques. If 
the data from one region fits well to the CRF from another region, 
this image is likely to be authentic, and spliced if otherwise. 
Finally, the cross-fitting errors from each region are represented 
using a 6-dimensional vector and fed into a RBF SVM classifier to 
classify into authentic or spliced. 

Only images in RAW or BMP format are tested and each 
spliced image is created in Adobe Photoshop using authentic 
images from 2 cameras with no post-processing to focus on the 
effects of splicing. The classification accuracy in 6 runs is 87.55% 
with the spliced image detection rate as high as 90.74%. However, 
the false acceptance rate (FAR) is also at least 15.58%. Even 
though the accuracy is reasonably high, only uncompressed images 
have been tested. Whether this technique would work well for 
JPEG compressed images remains unknown. Furthermore, spliced 
images created from original images taken by the same camera, or 
even the same model, are unlikely to be detected as forgery. 

 
4.5. Using Bicoherence and Higher Order Statistics 
Based on Farid’s [19] earlier success in applying bicoherence 
features for human-speech splicing detection,  Ng et al [14], [18] 
investigate the prospect of using bicoherence features to detect for 
the presence of abrupt discontinuities in an image, or the absence 
of optical low-pass property, as a sign of splicing. Besides using 
the original features that describe the mean of magnitude and 
phase entropy, the authors propose 2 new methods to augment the 
performance: (1) estimating the bicoherence features of the 
authentic counterpart, and (2) incorporating image features that 
capture the characteristics of different object interfaces. 
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Using SVM classification, the mean accuracy obtained is 
71.48%. Although the initial results are promising, the accuracy of 
71.48% is not very high and more effective features must be 
derived to model the sensitivity of bicoherence due to splicing. 
 
4.6. Using Robust Matching 
Fridrich et al [15] focus on the detection of a particular type of 
forgery, the copy-move attack, where a part of an image is cloned 
or duplicated elsewhere in the same image, usually to conceal an 
important feature. Popescu et al [20] have a similar approach. 

For uncompressed images, matching is carried out between 
blocks of size BxB to detect for exact replicas. To extend this idea 
to images saved in lossy JPEG format, instead of directly matching 
the pixel representation of each BxB block, the authors use a robust 
representation consisting of quantized DCT coefficients.  

Experiments on sample altered images have produced good 
results with the copied-and pasted areas successfully matched and 
identified. However, the authors also acknowledge that the 
algorithm might have falsely identified matching segments in flat, 
uniform areas, such as the sky. Thus, human interpretation is 
necessary to interpret the output of the algorithm.  
 

5. CONCLUSION 
 
Having examined several camera identification and forgery 
detection methods, we now can derive some interesting 
observations. It is observed that the identification methods based 
on intrinsic features of camera hardware, such as the lens and CCD 
sensor, give more reliable and better results than those methods 
based on other camera software parts (e.g. CFA interpolation 
algorithms). It also seems that only the methods modeling the 
imperfections of camera hardware can distinguish cameras of the 
same model. From our observations, there are two promising 
approaches towards a more stable, accurate method for identifying 
source cameras. The first one is to utilize the sensor noise pattern 
in some way that can overcome the problem of cropped images. 
The second approach is to combine several kinds of lens 
distortions such as chromatic aberration, spherical aberration, 
radial distortion, etc. 

On the other hand, methods for forgery detection have lower 
accuracy rates compared to camera identification methods. Out of 
the methods that check for inconsistencies across an image as a 
sign of tampering, it seems that the methods relying on hardware-
dependent characteristics (e.g. aberration and CRF) are potentially 
more reliable than methods relying on scene content (e.g. lighting 
and image statistics). This is possibly due to the relative difficulty 
in applying the same hidden characteristics consistently to all the 
spliced components. With the exception of the method exploiting 
CRF inconsistency, the other discussed methods would generally 
be resilient against composite images created from images 
captured with multiple cameras or even cameras of the same 
model. There are also methods examining CFA interpolation for its 
consistency across an image [23] or for absence of induced 
correlation [24]. 
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